载盐霉素聚合物胶束的构建与抗肿瘤干细胞的体外研究

张杨, 代文兵, 王坚成, 张强

中国药学杂志 ›› 2014, Vol. 49 ›› Issue (5) : 384-391.

PDF(5978 KB)
PDF(5978 KB)
中国药学杂志 ›› 2014, Vol. 49 ›› Issue (5) : 384-391. DOI: 10.11669/cpj.2014.05.009
论 著

载盐霉素聚合物胶束的构建与抗肿瘤干细胞的体外研究

  • 张杨1, 代文兵2, 王坚成2, 张强2
作者信息 +

Preparation of Salinomycin-Loaded Micelles and the Effects on Cancer Stem Cells in Vitro

  • ZHANG Yang1, DAI Wen-bing2, WANG Jian-cheng2, ZHANG Qiang2
Author information +
文章历史 +

摘要

目的 制备一种包载难溶性药物盐霉素的新型聚合物胶束系统, 以提高其水溶性, 并对其体外抗肿瘤干细胞作用进行评价。方法 以聚乙二醇-聚己内酯嵌段共聚物(mPEG-b-PCL)作为载体材料, 将盐霉素物理包载于聚合物胶束的内部, 同时对聚合物胶束的制备方法和载药胶束的处方进行了优化, 并进一步对最优处方的粒径及分布、形态、稳定性、释药规律等理化性质进行了考察;最后采用侧群细胞(Side Population, SP)分析的方法测定了载药胶束对MCF-7细胞体外活性的影响。结果 聚合物胶束的最优处方为药物(SAL)与聚合物材料(mPEG-b-PCL)的质量比1∶20, 该体系微粒的粒径小于30 nm, 外观呈球形, 大小分布均匀;载药胶束溶液的耐稀释性和热稳定性均良好。载盐霉素胶束能够降低MCF-7细胞中SP细胞的比例。结论 本实验制备的聚合物胶束载药系统能够显著提高盐霉素的水溶性, 并对乳腺癌干细胞表现出了选择性杀伤作用。

Abstract

OBJECTIVE To design and prepare a novel polymeric micelles preparation for hydrophobic salinomycin(SAL), then evaluate the effects of SAL micelles on cancer stem cells in vitro. METHODS SAL was entrapped into polymeric micelles constructed from amphiphilic diblock copolymer of poly(ethylene glycol)-block-poly(ε-caprolactone)(mPEG-b-PCL). Firstly, the process of preparing micelles and formulation composition were optimized. Then, the physicochemical properties such as particle size distribution, shape and surface morphology, stability and release rates of SAL-loaded micelles were studied. Finally, the side population(SP) cells were analyzed to evaluate the effects of SAL micelles on the MCF-7 cells. RESULTS The optimal formulation of drug-loaded micelles was mPEG-b-PCL copolymers and SAL(20∶1, w/w); the average particle size of SAL-loaded micelles was less than 30 nm, with narrow size distribution, uniform spherical shape and good stability. In vitro studies demonstrated that SAL-loaded micelles were able to decrease the proportion of SP cells. CONCLUSION Polymeric micelles are capable of overcoming the poor solubility of SAL, and SAL-loaded micelles can selectively deplete breast cancer stem cells.

关键词

盐霉素 / 胶束 / 肿瘤干细胞 / MCF-7 / 侧群细胞

Key words

salinomycin / micelle / cancer stem cell / MCF-7 / side population cell

引用本文

导出引用
张杨, 代文兵, 王坚成, 张强. 载盐霉素聚合物胶束的构建与抗肿瘤干细胞的体外研究[J]. 中国药学杂志, 2014, 49(5): 384-391 https://doi.org/10.11669/cpj.2014.05.009
ZHANG Yang, DAI Wen-bing, WANG Jian-cheng, ZHANG Qiang. Preparation of Salinomycin-Loaded Micelles and the Effects on Cancer Stem Cells in Vitro[J]. Chinese Pharmaceutical Journal, 2014, 49(5): 384-391 https://doi.org/10.11669/cpj.2014.05.009
中图分类号: R944   

参考文献

[1] DANFORTH H D, RUFF M D, REID W M, et al. Anticoccidial activity of salinomycin in battery raised broiler chickens. Poult Sci, 1977, 56(3):926-932.[2] CALLAWAY T R, EDRINGTON T S, RYCHLIK J R, et al. Ionophores:Their use as ruminant growth promotants and impact on food safety. Curr Issues Intest Microbiol, 2003, 4:43-51.[3] GUPTA P B, ONDER T T, JIANG G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 2009, 138(4):645-659.[4] FUCHS D, DANIEL V, SADEGHI M, et al. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Bioph Res Co, 2010, 394(4):1098-1104.[5] MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy:Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986, 46(12):6387-6392.[6] FORREST M L, WON C Y, MALICK A W, et al. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. J Controlled Release, 2006, 110(2):370-377.[7] ZHANG Y, ZHUO R X. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly(ethylene glycol) and polycaprolactone. Biomaterials, 2005, 26(33):6736-6742.[8] MACKENZIE I C. Retention of stem cell patterns in malignant cell lines. Cell Prolif, 2005, 38(6):347-355. [9] KONDO T, SETOGUCHI T, TAGA T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA, 2004, 101(3):781-786. DUSI G, GAMBA V. Liquid chromatography with ultraviolet detection of lasalocid, monensin, salinomycin and narasin in poultry feeds using pre-column derivatization. J Chromatogr A, 1999, 835(1-2):243-246. GAUCHER G, DUFRESNE M H, SANT V P, et al. Block copolymer micelles:preparation, characterization and application in drug delivery. J Controlled Release, 2005, 109(1-3):169-188. MAHMUD A, XIONG X B, LAVASANIFAR A. Development of novel polymeric micellar drug conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery. Eur J Pharm Biopharm, 2008, 69(3):923-934. KEDAR U, MPHARMA, PHUTANE P, et al. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine, 2010, 6(6):714-729. HIRSCHMANN-JAX C, FOSTER A E, WULF G G, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA, 2004, 101(39):14228-14233. ZHOU J, WULFKUHLE J, ZHANG H, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA , 2007, 104(41):16158-16163. DOWLING K C, THOMAS J K. A novel micellar synthesis and photophysical characterization of water-soluble acrylamide-styrene block copolymers. Macromolecules, 1990, 23(4):1059-1064. HAMAGUCHI T, MATSUMURA Y, SUZUKI M, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer, 2005, 92(7):1240-1246. UCHINO H, MATSUMURA Y, NEGISHI T, et al. Cisplatin-incorporating polymeric micelles(NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer, 2005, 93(6):678-687. ALLEN C, MAYSINGER D, EISENBERG A. Nano-engineering block copolymer aggregates for drug delivery. Colloid Surface B, 1999, 16(1-4):3-27. GAUCHER G, DUFRESNE M H, SANT V P, et al. Block copolymer micelles:preparation, characterization and application in drug delivery. J Controlled Release, 2005, 109(1-3):169-188. GABIZON A, SHMEEDA H, BARENHOLZ Y. Pharmacokinetics of pegylated liposomal Doxorubicin:Review of animal and human studies. Clin Pharmacokinet, 2003, 42(5):419-436. HASHIZUME H, BALUK P, MORIKAWA S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol, 2000, 156(4):1363-1380. PRABAHARAN M, GRAILER J J, PILLA S, et al. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(l-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials, 2009, 30(16):3009-3019. KATAOKA K, KWON G S, YOKOYAMA M, et al. Block copolymer micelles as vehicles for drug delivery. J Controlled Release, 1993, 24(1-3):119-132. WASHINGTON C. Drug release from microdisperse systems:A critical review. Int J Pharm, 1990, 58(1):1-12. REYA T, MORRISON S J, CLARKE M F, et al. Stem cells, cancer, and cancer stem cells. Nature, 2001, 414(6859):105-111. CLARKE M F, DICK J E, DIRKS P B, et al.Cancer stem cells-perspectives on current status and future directions:AACR Workshop on cancer stem cells. Cancer Res, 2006, 66(19):9339-9344. TRIEL C, VESTERGAARD M E, BOLUND L, et al. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res, 2004, 295(1):79-90.
PDF(5978 KB)

Accesses

Citation

Detail

段落导航
相关文章

/